Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme.
نویسندگان
چکیده
Mammalian lung develops as an evagination of ventral gut endoderm into the underlying mesenchyme. Iterative epithelial branching, regulated by the surrounding mesenchyme, generates an elaborate network of airways from the initial lung bud. Fibroblast growth factors (FGFs) often mediate epithelial-mesenchymal interactions and mesenchymal Fgf10 is essential for epithelial branching in the developing lung. However, no FGF has been shown to regulate lung mesenchyme. In embryonic lung, Fgf9 is detected in airway epithelium and visceral pleura at E10.5, but is restricted to the pleura by E12.5. We report that mice homozygous for a targeted disruption of Fgf9 exhibit lung hypoplasia and early postnatal death. Fgf9(-/-) lungs exhibit reduced mesenchyme and decreased branching of airways, but show significant distal airspace formation and pneumocyte differentiation. Our results suggest that Fgf9 affects lung size by stimulating mesenchymal proliferation. The reduction in the amount of mesenchyme in Fgf9(-/-) lungs limits expression of mesenchymal Fgf10. We suggest a model whereby FGF9 signaling from the epithelium and reciprocal FGF10 signaling from the mesenchyme coordinately regulate epithelial airway branching and organ size during lung embryogenesis.
منابع مشابه
Reciprocal epithelial-mesenchymal FGF signaling is required for cecal development.
Fibroblast growth factor (FGF) signaling mediates reciprocal mesenchymal-epithelial cell interactions in the developing mouse lung and limb. In the gastrointestinal (GI) tract, FGF10 is expressed in the cecal mesenchyme and signals to an epithelial splice form of FGF receptor (FGFR) 2 to regulate epithelial budding. Here, we identify FGF9 as a reciprocal epithelial-mesenchymal signal required f...
متن کاملTargeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice.
In order to address the biological function of GlcNAc N-deacetylase/N-sulfotransferase-1 (NDST-1), we disrupted the NDST-1 gene by homologous recombination in mouse embryonic stem cells. The NDST-1 null mice developed respiratory distress and atelectasis that subsequently caused neonatal death. Morphological examination revealed type II pneumocyte immaturity, which was characterized by an incre...
متن کاملAn FGF-WNT gene regulatory network controls lung mesenchyme development.
Lung mesenchyme is a critical determinant of the shape and size of the lung, the extent and patterning of epithelial branching, and the formation of the pulmonary vasculature and interstitial mesenchymal components of the adult lung. Fibroblast growth factor 9 (FGF9) is a critical regulator of lung mesenchymal growth; however, upstream mechanisms that modulate the FGF mesenchymal signal and the...
متن کاملKnockout of Insulin-Like Growth Factor-1 Receptor Impairs Distal Lung Morphogenesis
BACKGROUND Insulin-like growth factors (IGF-I and -II) are pleiotropic regulators of somatic growth and development in vertebrate species. Endocrine and paracrine effects of both hormones are mediated by a common IGF type 1 receptor (IGF-1R). Lethal respiratory failure in neonatal IGF-1R knockout mice suggested a particular role for this receptor in pulmonary development, and we therefore inves...
متن کاملFGF9 and SHH signaling coordinate lung growth and development through regulation of distinct mesenchymal domains.
Morphogenesis of the lung is regulated by reciprocal signaling between epithelium and mesenchyme. In previous studies, we have shown that FGF9 signals are essential for lung mesenchyme development. Using Fgf9 loss-of-function and inducible gain-of-function mouse models, we show that lung mesenchyme can be divided into two distinct regions: the sub-mesothelial and sub-epithelial compartments, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 128 11 شماره
صفحات -
تاریخ انتشار 2001